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The stability of cylindrical shells of oval cross section under the combined effect 

of axial compression and axisymmetric loads is investigated taking account of 

the bending in the subcritical state. The investigation is based on an analysis 

of the solution of the equilibrium equations of shells of oval section obtained by 
using finite differences. The magnitudes of the critical loads are determined by 

numerical analysis on an electronic digital computer. 

1, Let us use the equilibrium and strain compatibility equations for the stress func- 
tion cp and the radial displacement function w for a cylindrical shell [1] in the dimen- 

sionless form a% a%0 a20 
k*,V4q -j- k (0)~ - - -.__ - 

+ a<2 (,fj2 -~- 0 
(1.1) 

to solve the problem. Here o is the deflection, positive within the shell, and referred 

to the shell thickness h, cf, is a stress function in the middle surface, and R (8) is the 

shell radius. 
Let us investigate cylindrical shells with cross section radius of curvature 

R0 
R (@ = 1 + p cos 20 @,(I” <i) 

We take the buckling boundary conditions in the form 

ao %J w = ae = ‘p = X = o (rigid support) 

w = ici = tp = s = 0 (hinge support) 

2. We represent the functions cp and o as the sum of two components 

CP = GD~ (E, 9) + ‘P (E, 01, w = o0 (r;, 0) + w 6 9) (2.1) 

Here ‘p. (E, 9), o. (e, 9) characterize the subcritical state of the shell, and cp (E, e), 

o (g, 0) the increments in these quantities due to buckling. 
Substituting (2.1) into the system (1.1) and neglecting second order quantities, we 

linearize this system to 
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The system (2.2) affords a possibility of finding the solution of the nonlinear system 
(1.1) for a fixed value of the load parameter, as well as of resolving the question about 
the stability of the state under consideration. Externally, the right sides of the system 

(2.2) agree exactly with the left sides of the system (1.1). Hence, when the exact values 
of the functions cp,, 00 have been found (by any method), the system (2.2) becomes 
~omogeneo~. For some value of the load parameter it can have a nontrivial solution. 

According to @I, let us take some functions VOot ago as the zero approximation for 

the numerical solution of (1. l), and let us find the solution with previously assigned 
accuracy in their neighborhood. The next step is to find the increments cp’, o’ which 

are assumed small 
VP0 = ‘pIJo + ‘p’, 00 = c&Jo + 0’ (2.3) 

Substituting (2.3) into (1.1) and discarding second order quantities in vp’ and o’, we 

obtain a system of linear differential equations (2.2) for cp’ and CO’ . We append the 
increments found for the first ap~oximation to the zero ap~o~mation solutions and 

we obtain a new approximation, etc. Let us use finite differences to find the solution 

of the system (2.2). The successive approximation process can be continued until such 
solutions are obtained for which the right sides in the system (2.2). replaced by finite- 

difference equations, would be arbitrarily close to zero. 
The differential equations (2.2) are satisfied at the i th node by using difference 

approximations of the form 

& & - $-.I 1 

Here b = {cp, w}, Au is the spacing along the generator or the arc. Then,Eqs. (2.2) 
become the following finite-difference expression (in vector form) : 

(2.4) 

Elcp m-2 + &m__l + Bcp, + A(P,+~ + QJ,?,~ -t DI%,+ + zw, + Dzo,+, = i$,,, 

Em m-2 i X1%+1 + yarn + X2q,,+l + E2am+2 + Dlcp,_, -+ 29, + Dzqr,+, = Horn 

Y’m = IP,(p ‘p,ll VP,,3 ’ . .? (Pmnl 

The form of the matrices Eiy A, B, Di, Z, Xi, Y, P,,, Horn (i = 1, 2) is not presented 
because of their unwieldiness. 

The eight boundary conditions presented above are also written in finite differences 

at the boundary nodes. The equations at the nodes preceding the boundary are written 
taking account of the boundary conditions used, and symmetry is taken into account in 
the equations on the axes of symmetry. The solution of linear equations under the 
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accepted boundary conditions of the subcritical state is selected as the zero approxima- 
tion. A program is compiled on the BESM-4 computer and it permits determination of 
the critical loads. Questions of convergence are investigated. 

3. Let us examine the problem of stability of a finite cylindrical shell of oval sec- 
tion, loaded by : 

1) an annular concentrated force Q applied along the middle of the transverse 

section, 
2) an axial compressive force T , 
3) the combined effect of axial comFession T and the concentrated stress re- 

sultant Q , 

4) the combined effect of axial compression T and external pressure P. 

For o = 0.3 it has been ascertained as a result of computations 
of the load is determined from the expressions 

For a sufficiently long shell in the case of the separate effect of a 
and axial compression, we obtain 

P=O, 0.01, 0.1, 0.15, 0.2 
C1=0.35, 0.34, 0.31, 0.30, 0.26 
Ca=0.51, 0.50. 0.46, 0.43, 0.41 

that the criticalvalue 

concentrated force 

Therefore, the critical loads are reduced substantially in comparison with the correspond- 
ing load for a circular cylinder [3] as p increases. 

Fig. 1 Fig. 2 Fig. 3 

In the case of the combined effect of a concentrated force and axial compression, 
the dependence C, (C,) is represented in Fig.1 for fixed p . The results of investiga- 
ting the stability of hinge supported (dashes) and clamped (solid lines) shells under the 
combined effect of axial force T and external pressure P are presented in Fig. 2. 
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Therefore, an increase in the axial compressive force T contributes to a rise in the cri- 
tical external pressure P. The shape of the shell waviness under buckling is represented 
in Fig. 3. 

In conclusion, the author thanks I. I, Vorovich for formulating the problem and discuss- 

ing the results. 
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Problems which turn out to be incorrect in the membrane formu~tion are inves- 

tigated, The purpose of this paper is to show that the known anomaly, noted by 

Vlasov @]. in the behavior of shells of negative curvature and caused by the 
incorrectness of the formulation of the complete membrane problem for them, 
is not especially intrinsic property of shells of negative curvature and is observed 

also in shells of positive curvature, if the complete membrane problem turns out 
to be incorrect for them. The properties of the stress-strain state are studied as 
a function of the sign of the middle surface curvature and the manner of edge 

clamping. The state of stress of the shell is compared with the fundamental 
state of stress; the edge effect stresses are not taken into account. Two versions 

of the boundary conditions are considered : one edge of the shell free and the 

other rigidly clamped (cantilevered shell), and the case when both edges are 
rigidly clamped. 

1, Let us start from the equations and formulas of the bending theory in investigat- 

ing the state of stress of a thin elastic shell 
1 aT, 1 as 

-7 
.-I dx + 

~~(I.l-I’s)+IB~+~~~-~fX=O (43 (1.1) 


